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Novel proteins: from fold to function
Betsy A Smith and Michael H Hecht
The field of de novo protein design, though only two decades

old, has already reached the point where designing and

selecting novel proteins that are functionally active has been

achieved several times. Here we review recently reported de

novo functional proteins that were developed using various

approaches, including rational design, computational

optimization, and selection from combinatorial libraries. The

functions displayed by these proteins range from metal binding

to enzymatic catalysis. Some were designed for specific

applications in engineering and medicine, and others provide

life-sustaining functions in vivo.

Address

Departments of Chemistry and Molecular Biology, Princeton University,

Princeton, NJ 08544, United States

Corresponding author: Hecht, Michael H (hecht@princeton.edu)

Current Opinion in Chemical Biology 2011, 15:421–426

This review comes from a themed issue on

Molecular Diversity

Edited by T. Ashton Cropp and Dewey McCafferty

Available online 5 April 2011

1367-5931/$ – see front matter

# 2011 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.cbpa.2011.03.006

Introduction
The sequences and structures of natural proteins are the

results of eons of evolutionary selection. Some features of

these proteins are crucial for their functions, while others

are merely ‘evolutionary baggage’ that came along for the

ride. Designing proteins de novo provides an opportunity to

separate the crucial from the coincidental. Design also

allows scientists and engineers to explore beyond what

has already appeared in nature, and to devise structures and

functions that are possible, but have not yet been sampled

by nature. In just over 20 years, since the first de novo
designed proteins were reported [1,2], many different

structures have been described [3]. Some are recapitula-

tions of three-dimensional structures that occur frequently

in nature, while others were designed to fold into topol-

ogies that had not been seen previously [4–6]. Although the

design and optimization of stable structures continues as an

active research area [7], the next step — incorporating

functional activity into de novo proteins — is becoming a

major focus of the field.

This review will focus on proteins that are not based on

natural sequences. We emphasize recent achievements;
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readers are advised to consult other reviews for discus-

sions of earlier work on the binding activities of de novo
proteins and peptides [6,8,9].

Proteins designed to bind metals
One of the simplest protein functions is binding, and the

simplest ligand bound by native proteins is a metal ion.

Indeed, nearly a third of natural proteins contain a metal-

binding site [8]. Thus, it is not surprising that some of the

first functional de novo proteins were designed to bind

metals such as zinc or mercury [10,11]. One class of these

metal-binding proteins was based on a helix-loop-helix

dimer and known as the duo-ferri (DF) proteins because

the earliest versions bound two irons [12]. Members of

this family are water-soluble and can form complexes

with several different metals [13]. Some possess ferrox-

idase activity [14], and a DF protein was shown to react

with O2 to form an oxidized biferric species [15]. A recent

variant was designed with a binding site for phenol in

close proximity to the iron-binding sites. This protein

uses O2 to oxidize FeII to FeIII, and then oxidizes the

bound phenol while reducing the iron back to FeII. Like

natural enzymes, the de novo protein releases product and

repeats the catalytic process (Figure 1) [16�].

DF proteins are not the only de novo proteins designed to

bind metals. Another was designed based on a simple

amphipathic repeating peptide that trimerizes into a

three-helix bundle. Incorporation of one cysteine per

helix led to the co-ordination of various metals, including

Cd (II) in a rare trigonal geometry [17]. Recently, a four-

helix bundle protein was designed to bind Fe4S4 in its

hydrophobic core. This is particularly noteworthy given

that natural Fe4S4-binding proteins are not a-helical and

generally bind the ligand in flexible loops [18��].

Proteins designed to bind targets ranging
from small cofactors to large receptors
Four-helix bundles are relatively easy to design, and

numerous functions have been designed onto this struc-

tural scaffold. In most cases, the structure was designed

first, and function was added in a subsequent stage. A

function that has been explored extensively in four-helix

bundles is the ability to bind heme and related porphyrins

[19–21]. One de novo four-helix bundle protein was

altered to bind heme simply by adding four histidine

residues at appropriate positions [22]. A variant was

further engineered by the addition of a lipophilic

maquette to insert into lipid membranes, and the bound

heme was shown to be active in redox coupled proton

exchange across the membrane [23]. Another approach

used a library of four-helix bundle proteins containing a
Current Opinion in Chemical Biology 2011, 15:421–426
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Steps in creating a de novo phenol oxidase. The DF protein was created by adding metal-binding side chains to a helix-loop-helix dimer. Residues

capable of binding phenols were rationally designed into this protein to create the phenol-binding site. The final protein catalyzes the oxidation of

amino phenol and is active through multiple rounds of catalysis. Structure drawn in pymol [50] from 1EC5 [12].
single histidine that bound heme and catalyzed its oxi-

dative degradation [24].

Sequences need not be complex to bind heme. Starting

with a four-helix bundle scaffold containing only three

types of amino acids, heme-binding was designed by the

addition of histidines [25��]. After further refinement to

improve stability and structure, this protein was even-

tually developed into the first de novo heme protein that

co-ordinates O2 and maintains it in an oxy-ferrous state

rather than immediately reducing it. This capability,

similar to natural globins, was achieved by designing

the structure to exclude water from the core. Further

modifications will allow systematic variations to evaluate

the factors that affect O2 stability [25��].

Quinones have also been targeted for the design of novel

binding proteins. In one example, a three-helix bundle

was designed to bind 2,6-dimethylbenzoquinone

(DMBQ) via a cysteine side chain. The properties of

DMBQ bound to the protein were compared to its proper-

ties bound to a free cysteine. The pKA of the quinone was

similar when bound to the protein or the free cysteine,

suggesting that this interaction alone dominates the pKA.

Conversely, the reduction potential was significantly

different, implying that the rest of the protein plays a

role in this case [26]. This example demonstrates how de
novo proteins can be used to assess the minimal require-

ments for function in the absence of the evolutionary

baggage that complicates the sequences and structures of

naturally evolved proteins.

Targets for binding need not be limited to small mol-

ecules. For example, a four-helix bundle sequence

initially designed using only seven different amino acids

[27] was later redesigned by incorporating several key

residues that favored interaction with the interleukin 4

receptor. This de novo mimic of IL-4 bound the receptor

with an IC50 of 27 mM — lower than that measured for

native IL-4 [28].
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Beyond binding: novel proteins for catalytic
and biological functions
Proteins can be designed to mimic functions that occur in

very specific tertiary structures. For example, a de novo
protein designed to mimic the rubredoxin b-sheet struc-

ture was shown to bind iron and remain stable for 16

cycles of oxidation–reduction [29]. In another example, a

library of proteins was designed to fold into the secondary

and tertiary structure of the helical bundle protein chor-

ismate mutase, using a limited library of possible amino

acids. Using a selection in chorismate mutase-deficient E.
coli, a number of proteins were found that were able to

rescue the cells [30]. More recently, it was shown that the

protein could be limited to nine amino acids while still

rescuing the mutant cells [31].

Protein minimization can be accomplished by grafting the

functional features that occur naturally on a large scaffold

onto a small scaffold that was designed de novo. For

example, Ghirlanda and coworkers grafted key residues

from a large protein important in phagocytic macrophage

activity onto a de novo three-helix bundle, producing a

novel protein that showed native-like activity in macro-

phages [32]. As this protein has two threonines that can be

glycosylated, it has also been used to investigate the

energetic effects of glycosylation [33].

Not all biological functions involve ligand binding or

enzymatic catalysis. Protein design has also been used

to devise pores in lipid bilayers. For example, the novel

protein, SGP, not only formed pores; it also showed

antitumor properties in animal models [34]. De novo
proteins are also finding use in fields outside of biology;

designed helical dimers can be adsorbed onto gold sur-

faces, and the electronic properties of the gold are modu-

lated depending on whether the dimers are parallel or

antiparallel [35].

Design can also be used to evaluate different structural

folds and to determine which are best suited for particular
www.sciencedirect.com
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Creating a de novo protein to perform the Kemp elimination. (a) Kemp elimination. (b) Two examples of active-site motifs that were used as input for

modeling. (c) Comparison of computed structure (gray) bound to transition state (yellow) with solved crystal structure of a de novo enzyme in the

unbound state (cyan). Figure adapted with permission from [38��], # 2008 Nature Publishing Group.
functions. For example, Baker and coworkers used com-

putational methods to search over 1018 possibilities in 71

different scaffolds for a protein that would catalyze a

retro-aldol reaction. They constructed and characterized

the 72 most likely contenders, and of these, 32 had

detectable activity [36�]. A similar approach was used

to design proteins to facilitate the Kemp elimination, a

reaction not catalyzed by any known enzyme. In this

reaction, a base catalyzes the ring-opening of a benzisox-

azole to produce an a-cyanophenol [37] (Figure 2a). To

design a protein that catalyzed this reaction, compu-

tational design was first used to graft various basic resi-

dues onto a variety of protein scaffolds (Figure 2b and c).

After computational optimization, 59 proteins were

expressed and tested experimentally, and eight of these

showed catalytic activity [38��]. Using in vitro evolution

by random mutation and shuffling, an enzyme was even-

tually developed that had a rate enhancement 1.18 � 106

fold above the uncatalyzed reaction.

Functional proteins from combinatorial
libraries of novel sequences
An alternative approach to residue-by-residue rational

design is to construct large libraries of novel sequences

and then screen for function. If the libraries are con-

structed randomly, then the vast majority of sequences

will not be functional, and finding rare functional

sequences will require screening through enormous

libraries. Nonetheless, a pioneering study by Keefe and

Szostak selected four ATP-binding proteins from a ran-

dom library containing 6 � 1012 sequences 80 amino acids

in length [39]. One of these proteins was subjected to

directed evolution and characterized crystallographically.
www.sciencedirect.com 
During this process, it was discovered that the protein not

only bound ATP, but also hydrolyzed it to ADP [40].

Since well-defined protein functions typically depend on

well-ordered structures, collections that favor folded struc-

tures are likely to contain a much higher fraction of

functionally active proteins. One way to bias a library in

favor of folded structures is to design a library of sequences

to fold into one particular topology, such as a four-helix

bundle, while still allowing combinatorial diversity in

sequence, thereby facilitating the possibility of many

different functions. This can be achieved by using a binary

code for protein design, in which each position in the

sequence is specified as polar or nonpolar, but the identity

of each side chain is allowed to vary (Figure 3a) [41].

Our laboratory has used the binary code strategy to design

several libraries, including both a-helical and b-sheet

topologies. The a-helical collections have yielded func-

tionally active protein with a surprisingly high frequency.

For example, heme-binding was observed for approxi-

mately half of the members of a binary-patterned library

of de novo four-helix bundles [42]. These heme-binding

proteins were assayed for peroxidase activity. A large

proportion showed activity, and one promoted rapid

catalytic turnover [43]. When exposed to immobilized

heme on a solid surface, this protein catalyzed peroxidase

activity about half as well as horseradish peroxidase, a

protein that evolved over millions of years to perform this

reaction [44]. The proteins in our libraries of four-helix

bundles were subsequently evaluated for activities that

do not require cofactors, such as esterase and lipase

functions. About 30% of the library showed esterase

activity, and 20% lipase activity [45��]. Interestingly, a
Current Opinion in Chemical Biology 2011, 15:421–426
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Figure 3
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(a) Creation of a de novo four-helix bundle library using binary patterning. (b) Screening the binary-patterned library for proteins that rescue

auxotrophic E. coli strains on minimal media. Structures drawn in pymol [50] from 1P68 [51].
significant proportion was active in all three assays, indi-

cating a high level of promiscuity. This is consistent with

hypotheses about the early evolution of natural proteins,

which suggest that ‘primitive enzymes possessed a very

broad specificity, permitting them to react with a wide

range of related substrates.’ [46] Such broad specificity

would have facilitated life at the early stages of evolution

because it would have ‘maximized the catalytic versatility

of an ancestral cell that functioned with limited enzyme

resources.’ [46]

Another approach to library design is to base the library on

the sequence and structure of a natural scaffold and

randomize selected parts to introduce side chains that

might support catalytic activity. For example, a library

based on a nonenzymatic zinc finger scaffold was

designed by completely randomizing side chains in two

loop regions. The collection of 4 � 1012 sequences was

screened for ATP-binding ability [47]. The same library

was also screened for RNA ligase activity. Sequences that

catalyzed the reaction were subjected to mutagenesis and

optimization. Ultimately a protein was obtained that

increased the rate of ligation 2 � 106-fold and was active

for multiple turnovers [48].

Novel proteins that function in vivo
Although the field of protein design has focused primarily

on devising novel proteins that function in vitro, a long-

term goal is to produce novel macromolecules that provide
Current Opinion in Chemical Biology 2011, 15:421–426 
essential cellular functions in living systems. A major

advantage of working with activity in vivo is that one does

not have to rely on engineered screens. Instead, one can

use more powerful life-or-death genetic selections. Our

laboratory has used selections in vivo to probe a library of

1.5 � 106 novel four-helix bundles for proteins capable of

rescuing strains of E. coli that were deleted for natural

genes essential for growth on minimal media. Since the

library was not designed for any specific function, a variety

of auxotrophic strains were screened. Not surprisingly,

most of the auxotrophic strains were not rescued. How-

ever, several deletions of conditionally essential genes

were rescued by proteins from our library (Figure 3b).

These include deletions of the following genes and

proteins: SerB, which encodes phosphoserine phospha-

tase; GltA, which encodes citrate synthase; IlvA, which

encodes threonine deaminase; and Fes, which encodes

enterobactin esterase [49��]. Although the binary-pat-

terned library was designed solely for folding into a

particular structure, several proteins from this library

can substitute for various different natural proteins, none

of which have structures that resemble a four-helix bundle.

These results demonstrate that novel proteins that are

unrelated to natural sequences can provide functions that

sustain the growth of living organisms.

Conclusion
De novo proteins offer promise in many areas of research,

from basic biology to applications in engineering and
www.sciencedirect.com
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medicine. Design can be used to increase activity,

enhance protein stability and shelf life, decrease protein

size, and uncover information about the mechanisms of

reactions. Moreover, compared to standard organic chem-

istry procedures, protein catalysts are environmentally

more benign. Increased computational power and better

modeling allow more of the work to be done rapidly

before entering a laboratory, and enhance the likelihood

that laboratory experiments will succeed. In just over two

decades since the first de novo proteins were designed, the

field has reached a stage where it is now possible to design

structures never seen before in nature, to catalyze reac-

tions for which no natural enzyme exists, and to isolate

sequences that have no biological ancestors but none-

theless enable the growth of living cells.
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